Femtosecond stimulated Raman spectroscopy (FSRS) is a relatively recent yet moderately widespread time-resolved spectroscopy technique for observing changes in the vibrational structure of optically excited molecular systems.

At its core, FSRS is a multi-pulse technique that can be summarized as follows. First, an ultrashort actinic pump pulse acts on a molecular system in its ground state and initiates the photoreaction. Then, a pair of temporally delayed pulses probes the successive photoevolution. Here, a picosecond Raman pump and broadband femtosecond Raman probe pulse are used. The temporal overlap of these two pulses brings coherence in the excited state, resulting in the amplification of the Stokes and anti-Stokes frequencies within the probe field, i.e., stimulated Raman emission. Since a high degree of coherence is achieved only during the short temporal overlap of the Raman pump and probe pulses, FSRS spectroscopy offers a high resolution in both spectral and temporal domains.

FSRS is readily available in the HARPIA spectroscopy system, providing vibrational structural information with < 200 fs temporal and < 10 cm-1 spectral resolution. Raman pump can be generated using SHBC, if a fixed-wavelength output at 515 nm is sufficient, or SHBC together with ORPHEUS-PS, if a wide tuning range is desired. The system is pumped by a PHAROS femtosecond laser.

  • 行业领先的灵敏度
  • 330 nm – 24 µm 光谱范围
  • 探测光延迟范围 2 ns – 8 ns
  • 泵浦能量低至nJ级别
  • 低温恒温器和蠕动泵支架
  • 传输附加飞秒或皮秒光束
  • 偏振、强度和延迟可控
  • 支持飞秒受激拉曼散射(FSRS)
  • 支持Z扫描
  • 输出波长 515 nm
  • 带宽< 10 cm-1
  • 脉宽 2 – 4 ps
  • 转换效率 > 30%
  • 用于泵浦 ORPHEUS-PS
  • 2100 – 4800 nm 可调波长
  • 800 fs – 3 ps 脉宽
  • < 20 cm-1 光谱带宽
  • 近带宽极限输出
  • 高达 100 kHz 的重复频率
  • 高稳定性输出
  • 190 nm – 16000 nm 可调波长
  • 单脉冲 – 2 MHz 重复频率
  • 最高泵浦功率 80 W
  • 最大泵浦单脉冲能量 2 mJ
  • 全自动化控制
  • 100 fs – 20 ps 连续可调脉宽
  • 最大单脉冲能量 4 mJ
  • 最高输出功率 20 W
  • 单脉冲 – 1 MHz 重复频率
  • BiBurst 脉冲串功能
  • 自动谐波发生器(高达 5 次谐波)

Spontaneous versus Stimulated Surface-Enhanced Raman Scattering of Liquid Water

P. Filipczak, M. Pastorczak, T. Kardaś, M. Nejbauer, C. Radzewicz, and M. Kozanecki, The Journal of Physical Chemistry C 3 (125), 1999-2004 (2020).

Incoherent phonon population and exciton-exciton annihilation dynamics in monolayer WS2 revealed by time-resolved Resonance Raman scattering

S. Han, C. Boguschewski, Y. Gao, L. Xiao, J. Zhu, and P. H. M. van Loosdrecht, Optics Express 21 (27), 29949 (2019).

A tunable time-resolved spontaneous Raman spectroscopy setup for probing ultrafast collective excitation and quasiparticle dynamics in quantum materials

R. B. Versteeg, J. Zhu, P. Padmanabhan, C. Boguschewski, R. German, M. Goedecke, P. Becker, and P. H. M. van Loosdrecht, Structural Dynamics 4 (5), 044301 (2018).

Exciton and phonon dynamics in highly aligned 7-atom wide armchair graphene nanoribbons as seen by time-resolved spontaneous Raman scattering

J. Zhu, R. German, B. V. Senkovskiy, D. Haberer, F. R. Fischer, A. Grüneis, and P. H. M. van Loosdrecht, Nanoscale 37 (10), 17975-17982 (2018).

Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes

D. S. Choi, B. J. Rao, D. Kim, S. Shim, H. Rhee, and M. Cho, Physical Chemistry Chemical Physics 25 (20), 17156-17170 (2018).

Selective Suppression of Stimulated Raman Scattering with Another Competing Stimulated Raman Scattering

D. Kim, D. S. Choi, J. Kwon, S. Shim, H. Rhee, and M. Cho, The Journal of Physical Chemistry Letters 24 (8), 6118-6123 (2017).

Structural Heterogeneity in the Localized Excited States of Poly(3-hexylthiophene)

W. Yu, T. J. Magnanelli, J. Zhou, and A. E. Bragg, The Journal of Physical Chemistry B 22 (120), 5093-5102 (2016).