Laser-induced photopolymerization, also known as direct laser lithography or direct laser writing, is a technique for the formation of three-dimensional (3D) micro- and nanostructures with variable architectures and subwavelength resolution.

The technique relies on a multiphoton absorption process in a material, such as photosensitive resin, typically transparent at the wavelength of laser radiation. The chemical change occurs at the laser focal spot via the absorption of two or more photons. The laser radiation is well-controlled for rapid prototyping of arbitrary 3D shapes with fine features. In particular, laser-induced photopolymerization is applied in the manufacturing of mesoscale optical, photonic, microfluidic components, as well as complex scaffolds for tissue engineering.

Laser-induced photopolymerization is associated mainly with petroleum-derived resins, but using bio-based materials obtained from renewable sources is becoming a trend. Such an environment-friendly approach offers easy processing, fulfills technological, functional, and durability requirements, and ensures increased bio-compatibility, recycling, and eventually lower cost. The research groups from Vilnius University and Kaunas University of Technology have recently employed a bio-based resin derived from soybean oil, which can be processed even without the addition of a photoinitiator. Their results show a high potential of the bio-based resins for high fidelity prototyping and additive manufacturing; see the publication for more details. 

The photopolymerization is effectively obtained using PHAROS and CARBIDE series femtosecond lasers with their fundamental wavelength (1030 nm) or higher harmonics (515 nm, 343 nm), or wavelength-tunable industrial-grade I-OPA (320 – 10000 nm). High short- and long-term stability together with high beam quality ensure the robust and precise formation of the 3D micro- and nanostructures.

  • 100 fs – 20 ps 连续可调脉宽
  • 最大单脉冲能量 4 mJ
  • 最高输出功率 20 W
  • 单脉冲 – 1 MHz 重复频率
  • BiBurst 脉冲串功能
  • 自动谐波发生器(高达 5 次谐波)
  • 515 nm, 343 nm, 257 nm 和 206 nm
  • 软件选择输出波长
  • 直接安装在激光器头上并集成一体式
  • 坚固耐用的工业级机械设计
  • 190 fs – 20 ps 连续可调脉宽
  • 最大单脉冲能量 2 mJ
  • 最大输出功率 80 W
  • 单脉冲 – 2 MHz 重复频率
  • 脉冲选择器功能,可按需输出脉冲
  • BiBurst 脉冲串模式
  • 风冷型号
  • 515 nm, 343 nm 和 257 nm
  • 软件选择输出波长
  • 直接安装在激光器头上并集成一体式
  • 坚固耐用的工业级机械设计
  • 30 W 紫外型号
  • 515 nm、343 nm、258 nm 和 206 nm 输出
  • 有源谐波的简单选择
  • 同步或切换输出
  • 高功率和高能量、可定制型号
  • 可调谐或固定波长型号
  • 坚固的工业级机械设计
  • 即插即用、安装简洁、操作方便
  • 单脉冲 – 2 MHz 重复频率
  • 高达 40 W 的泵浦功率
  • 超短脉宽 (< 100 fs)
  • 11、20、40 或 76 MHz 的重复频率
  • < 50 fs 的脉宽
  • 高达 0.6 μJ 的脉冲能量
  • 高达 20 W 的输出功率
  • 工业级设计
  • CEP 稳定
  • 重复频率锁定至外部信号源

An Improved Transwell Design for Microelectrode Ion-Flux Measurements

B. Buchroithner, P. Spurný, S. Mayr, J. Heitz, D. Sivun, J. Jacak, and J. Ludwig, Micromachines 3 (12), 273 (2021).

Birefringent optical retarders from laser 3D-printed dielectric metasurfaces

S. Varapnickas, S. C. Thodika, F. Moroté, S. Juodkazis, M. Malinauskas, and E. Brasselet, Applied Physics Letters 15 (118), 151104 (2021).

Dual Channel Microfluidics for Mimicking the Blood–Brain Barrier

B. Buchroithner, S. Mayr, F. Hauser, E. Priglinger, H. Stangl, A. R. Santa‑Maria, M. A. Deli, A. Der, T. A. Klar, M. Axmann et al., 2 (15), 2984-2993 (2021).

Focal spot optimization through scattering media in multiphoton lithography

B. Buchegger, A. Haghofer, D. Höglinger, J. Jacak, S. Winkler, and A. Hochreiner, Optics and Lasers in Engineering 142, 106607 (2021).

Vegetable Oil-Based Thiol-Ene/Thiol-Epoxy Resins for Laser Direct Writing 3D Micro-/Nano-Lithography

S. Grauzeliene, A. Navaruckiene, E. Skliutas, M. Malinauskas, A. Serra, and J. Ostrauskaite, Polymers 6 (13), 872 (2021).

3D multiphoton lithography using biocompatible polymers with specific mechanical properties

B. Buchroithner, D. Hartmann, S. Mayr, Y. J. Oh, D. Sivun, A. Karner, B. Buchegger, T. Griesser, P. Hinterdorfer, T. A. Klar et al., Nanoscale Advances 6 (2), 2422-2428 (2020).

A Bio-Based Resin for a Multi-Scale Optical 3D Printing

E. Skliutas, M. Lebedevaite, S. Kasetaite, S. Rekštytė, S. Lileikis, J. Ostrauskaite, and M. Malinauskas, Scientific Reports 1 (10) (2020).

Dynamic voxel size tuning for direct laser writing

T. Tičkūnas, D. Paipulas, and V. Purlys, Optical Materials Express 6 (10), 1432 (2020).

Optically-Thin Broadband Graphene-Membrane Photodetector

T. Moein, D. Gailevičius, T. Katkus, S. H. Ng, S. Lundgaard, D. J. Moss, H. Kurt, V. Mizeikis, K. Staliūnas, M. Malinauskas et al., Nanomaterials 3 (10), 407 (2020).

Mesoscale laser 3D printing

L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, Optics Express 11 (27), 15205 (2019).