Nonlinear microscopy is a powerful technique for imaging inside living organisms with a submicrometer resolution at millimeter depths. In conjunction with genetically-encoded calcium indicators and opsins, multiphoton fluorescence (MPEF) microscopy has revolutionized neuroimaging and is becoming a standard tool in neuroscience, while label-free methods such as second- and third-harmonic generation (SHG and THG), and coherent anti-Stokes and stimulated Raman scattering (CARS and SRS) have been developed into ultrasensitive structural and chemical imaging techniques.
The nonlinear optical processes of nonlinear microscopy require high light intensities, which can be reached at low average power when ultrashort light pulses are tightly focused. This feature is exploited to provide optical sectioning and to improve imaging contrast deep inside scattering tissues. Multiphoton excitation occurs when two or more photons simultaneously pass in the vicinity of a molecule, and their combined energy is used for excitation leading to fluorescence. The simultaneous arrival of several photons can also result in a harmonic generation – radiation at double or triple of the excitation laser frequency. Harmonic generation is an intrinsic label-free contrast determined by and used to characterize the molecular order and homogeneity of the sample.
Higher-order, three- and four-photon-excited (3PEF and 4PEF), fluorescence microscopy deserves special attention as it enables imaging at depths that cannot be achieved with conventional microscopy techniques, especially in strongly scattering samples such as the brain. Most importantly, modern laser sources can operate at the required repetition rates and deliver the necessary pulse energy for real-time functional brain imaging at biologically-relevant depths.
CRONUS-3P is an OPA-based laser source that was developed specifically for nonlinear microscopy. It provides µJ-level sub-85 fs pulses at repetition rates of up to 2 MHz and tunable from 1.25 µm to 1.8 µm, thus covering the biological transparency windows at 1.3 µm and 1.7 µm for 3PEF microscopy. CRONUS-3P has integrated group delay dispersion (GDD) control, ensuring optimal pulse duration at the sample, and optional automated beam steering to guarantee laser pointing stability.
- 高单脉冲能量、高重复频率、高平均功率
- 1250 – 1800 nm 可调波长范围
- < 50 fs 脉宽
- 自动化 GDD 控制
- 工业级设计
- 高输出稳定性
- 三个同步步输出
- 自动化 GDD 控制
- 瓦特级高输出功率、高重复频率
- 工业级设计
- 高输出稳定性
- 结合共线和非共线 OPA 的最佳特性
- 650 – 900 nm & 1200 – 2500 nm 可调波长
- 单脉冲 – 2 MHz 重复频率
- 脉宽 < 100 fs
- 可调光谱带宽
- 波长调谐无间隙的长脉冲模式
- 两个既同步又独立的输出
- 210 nm – 16 000 nm 可调波长
- 单脉冲 – 2 MHz 重复频率
- 高达 60 W 的泵浦功率
- 高达 0.5 mJ 的泵浦能量
- 选配 CEP 稳定功能
- 11、20、40 或 76 MHz 的重复频率
- < 50 fs 的脉宽
- 高达 0.6 μJ 的脉冲能量
- 高达 20 W 的输出功率
- 工业级设计
- CEP 稳定
- 重复频率锁定至外部信号源
- 100 fs – 20 ps 连续可调脉宽
- 最大单脉冲能量 4 mJ
- 最高输出功率 20 W
- 单脉冲 – 1 MHz 重复频率
- BiBurst 脉冲串功能
- 自动谐波发生器(高达 5 次谐波)
- 190 fs – 20 ps 连续可调脉宽
- 最大单脉冲能量 2 mJ
- 最大输出功率 80 W
- 单脉冲 – 2 MHz 重复频率
- 脉冲选择器功能,可按需输出脉冲
- BiBurst 脉冲串模式
- 风冷型号
Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping
Z. Qin, Z. She, C. Chen, W. Wu, J. K. Y. Lau, N. Y. Ip, and J. Y. Qu, Nature Biotechnology (2022).
Biodegradable Harmonophores for Targeted High-Resolution In Vivo Tumor Imaging
A. Y. Sonay, K. Kalyviotis, S. Yaganoglu, A. Unsal, M. Konantz, C. Teulon, I. Lieberwirth, S. Sieber, S. Jiang, S. Behzadi et al., ACS Nano 3 (15), 4144-4154 (2021).
Direct focus sensing and shaping for high-resolution multi-photon imaging in deep tissue
Z. Qin, Z. She, C. Chen, W. Wu, J. K. Y. Lau, N. Y. Ip, and J. Y. Qu, (2021).
Exploring two-photon optogenetics beyond 1100~nm for specific and effective all-optical physiology
T. Fu, I. Arnoux, J. Döring, H. Backhaus, H. Watari, I. Stasevicius, W. Fan, and A. Stroh, iScience 3 (24), 102184 (2021).
Fast optical recording of neuronal activity by three-dimensional custom-access serial holography
W. Akemann, S. Wolf, V. Villette, B. Mathieu, A. Tangara, J. Fodor, C. Ventalon, J. Léger, S. Dieudonné, and L. Bourdieu, Nature Methods 1 (19), 100-110 (2021).
In-vivo tracking of harmonic nanoparticles: a study based on a TIGER widefield microscope [Invited]
L. Vittadello, C. Kijatkin, J. Klenen, D. Dzikonski, K. Kömpe, C. Meyer, A. Paululat, and M. Imlau, Optical Materials Express 7 (11), 1953 (2021).
NIR-to-NIR Imaging: Extended Excitation Up to 2.2 µm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope
L. Vittadello, J. Klenen, K. Koempe, L. Kocsor, Z. Szaller, and M. Imlau, Nanomaterials 12 (11), 3193 (2021).
Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins
A. Forli, M. Pisoni, Y. Printz, O. Yizhar, and T. Fellin, eLife 10 (2021).
Probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging
L. Mouchliadis, S. Psilodimitrakopoulos, G. M. Maragkakis, I. Demeridou, G. Kourmoulakis, A. Lemonis, G. Kioseoglou, and E. Stratakis, npj 2D Materials and Applications 1 (5) (2021).
Strained Epitaxy of Monolayer Transition Metal Dichalcogenides for Wrinkle Arrays
J. Wang, M. Han, Q. Wang, Y. Ji, X. Zhang, R. Shi, Z. Wu, L. Zhang, A. Amini, L. Guo et al., ACS Nano (2021).