Angle-resolved photoemission spectroscopy (ARPES) is used to analyze the electronic band structure in momentum and energy space for superconductors, topological insulators, transition metal dichalcogenides, and other crystalline materials. In ARPES, a deep-UV laser beam is sent onto the surface. The electrons are emitted by the photoelectric effect above the vacuum level and then collected by a detector, scanned around the sample. Analyzing the energy and momentum of the emitted electron provides the required information for a complete electronic bandstructure mapping.
Time- and angle-resolved photoemission spectroscopy (TR-ARPES) extends and complements conventional ARPES by adding femtosecond temporal resolution. TR-ARPES resolves elementary scattering processes directly in the electronic band structure as a function of energy and electron momentum due to the simultaneous measurement of the spectral and dynamic information. In such a pump-probe scheme, a femtosecond infrared laser pulse excites the sample by electron-hole pair creation, and a delayed UV pulse probes momentum and energy of electrons in the conduction band.
The ideal laser source for TR-ARPES produces deep UV photons at a high repetition rate (hundreds of kHz or higher). Intermediate pulse energy is also advantageous because high pulse energies can cause parasitic space charge effects at the measured surface. Typically, the UV photon is generated by high harmonic generation (HHG) in solids or gases.
Optical parametric amplifiers (OPAs), such as ORPHEUS-MIR and ORPHEUS-N, and optical parametric chirped-pulse amplifiers (OPCPAs) provide state-of-the-art solutions for TR-ARPES.
- < 6 fs 变换极限脉宽
- 高达 1 MHz 的重复频率
- 高达 320 W 的泵浦功率
- 高达 8 mJ 的泵浦单脉冲能量
- CEP 稳定选项
- 占地面积小
- 高达 800 cm-1 的光谱带宽
- 2500 – 15000 nm 可调波长
- < 100 fs 脉宽
- 高达 400 kHz 的重复频率
- 可选配 CEP 稳定
- < 30 fs 脉宽
- 集成的脉宽压缩器
- 可调节的光谱带宽和脉宽
- 内置光谱仪监测波长
- 190 nm – 16000 nm 可调波长
- 单脉冲 – 2 MHz 重复频率
- 最高泵浦功率 80 W
- 最大泵浦单脉冲能量 2 mJ
- 全自动化控制
- 100 fs – 20 ps 连续可调脉宽
- 最大单脉冲能量 4 mJ
- 最高输出功率 20 W
- 单脉冲 – 1 MHz 重复频率
- BiBurst 脉冲串功能
- 自动谐波发生器(高达 5 次谐波)
- 190 fs – 20 ps 连续可调脉宽
- 最大单脉冲能量 2 mJ
- 最大输出功率 80 W
- 单脉冲 – 2 MHz 重复频率
- 脉冲选择器功能,可按需输出脉冲
- BiBurst 脉冲串模式
- 风冷型号
- 515 nm、343 nm、258 nm 和 206 nm 输出
- 有源谐波的简单选择
- 同步或切换输出
- 高功率和高能量、可定制型号
Investigation of the non-equilibrium state of strongly correlated materials by complementary ultrafast spectroscopy techniques
H. Hedayat, C. J. Sayers, A. Ceraso, J. van Wezel, S. R. Clark, C. Dallera, G. Cerullo, E. D. Como, and E. Carpene, New Journal of Physics 3 (23), 033025 (2021).
Spatially heterogeneous ultrafast interfacial carrier dynamics of 2D-MoS2 flakes
Y. Liang, B. Li, Z. Li, G. Zhang, J. Sun, C. Zhou, Y. Tao, Y. Ye, Z. Ren, and X. Yang, 21, 100506 (2021).
Ultrafast generation and decay of a surface metal
L. Gierster, S. Vempati, and J. Stähler, Nature Communications 1 (12) (2021).
A combined laser-based angle-resolved photoemission spectroscopy and two-photon photoemission spectroscopy study of Td–WTe2
P. Hein, S. Jauernik, H. Erk, L. Yang, Y. Qi, Y. Sun, C. Felser, and M. Bauer, Journal of Physics: Condensed Matter 34 (32), 345503 (2020).
Coherent narrowband light source for ultrafast photoelectron spectroscopy in the 17–31 eV photon energy range
R. Cucini, T. Pincelli, G. Panaccione, D. Kopic, F. Frassetto, P. Miotti, G. M. Pierantozzi, S. Peli, A. Fondacaro, A. D. Luisa et al., Structural Dynamics 1 (7), 014303 (2020).
Extreme ultraviolet time- and angle-resolved photoemission setup with 21.5 meV resolution using high-order harmonic generation from a turn-key Yb:KGW amplifier
Y. Liu, J. E. Beetar, M. M. Hosen, G. Dhakal, C. Sims, F. Kabir, M. B. Etienne, K. Dimitri, S. Regmi, Y. Liu et al., Review of Scientific Instruments 1 (91), 013102 (2020).
High resolution time- and angle-resolved photoemission spectroscopy with 11 eV laser pulses
C. Lee, T. Rohwer, E. J. Sie, A. Zong, E. Baldini, J. Straquadine, P. Walmsley, D. Gardner, Y. S. Lee, I. R. Fisher et al., Review of Scientific Instruments 4 (91), 043102 (2020).
Spontaneous Exciton Dissociation at Organic Semiconductor Interfaces Facilitated by the Orientation of the Delocalized Electron–Hole Wavefunction
T. R. Kafle, B. Kattel, S. Wanigasekara, T. Wang, and W. Chan, Advanced Energy Materials 10 (10), 1904013 (2020).
Femtosecond time-resolved spectroscopic photoemission electron microscopy for probing ultrafast carrier dynamics in heterojunctions
B. Li, G. Zhang, Y. Liang, Q. Hao, J. Sun, C. Zhou, Y. Tao, X. Yang, and Z. Ren, 4 (32), 399-405 (2019).
Evidence for topological defects in a photoinduced phase transition
A. Zong, A. Kogar, Y. Bie, T. Rohwer, C. Lee, E. Baldini, E. Ergeçen, M. B. Yilmaz, B. Freelon, E. J. Sie et al., Nature Physics 1 (15), 27-31 (2018).