Applications

时间分辨荧光光谱学

Time-resolved fluorescence spectroscopy carries information on the molecular processes in the excited state.  A few techniques allow measuring fluorescence dynamics at different time scales using the same experimental setup:

  • fluorescence upconversion,
  • time-correlated single-photon counting (TCSPC),
  • phosphorescence.

In the fluorescence upconversion experiment, the signal from the sample is mixed in a nonlinear crystal with a gating femtosecond pulse to achieve high temporal resolution, which is limited by the duration of the gate and pump pulses. For fluorescence decay times in the nanosecond to microsecond range, the instrument can be used in time-correlated single-photon counting (TCSPC) mode to measure kinetic traces up to 5 μs. TCSPC technique can be further expanded to measure ultra-long fluorescence dynamics, for example, phosphorescence, lasting for milliseconds. The combination of these three time-resolved fluorescence techniques enables the measurement of spectrally-resolved fluorescence decay in the femtosecond to the millisecond range.

The HARPIA-TF is a time-resolved fluorescence measurement module that combines fluorescence upconversion and TCSPC techniques. With the use of a high repetition rate PHAROS or CARBIDE femtosecond laser, the fluorescence dynamics are measured while exciting the samples with pulse energies down to several nanojoules.

  • 飞秒到微秒的测量
  • 全自动切换荧光上转换和 TCSPC 测量
  • 全自动光谱扫描和校正
  • 可作为独立模块使用(选配)
  • 行业领先的灵敏度
  • 330 nm – 24 µm 光谱范围
  • 探测光延迟范围 2 ns – 8 ns
  • 泵浦能量低至nJ级别
  • 低温恒温器和蠕动泵支架
  • 100 fs – 20 ps 连续可调脉宽
  • 最大单脉冲能量 4 mJ
  • 最高输出功率 20 W
  • 单脉冲 – 1 MHz 重复频率
  • BiBurst 脉冲串功能
  • 自动谐波发生器(高达 5 次谐波)
  • 190 fs – 20 ps 连续可调脉宽
  • 最大单脉冲能量 2 mJ
  • 最大输出功率 80 W
  • 单脉冲 – 2 MHz 重复频率
  • 脉冲选择器功能,可按需输出脉冲
  • BiBurst 脉冲串模式
  • 风冷型号
  • 190 nm – 16000 nm 可调波长
  • 单脉冲 – 2 MHz 重复频率
  • 最高泵浦功率 80 W
  • 最大泵浦单脉冲能量 2 mJ
  • 全自动化控制

Dopamine Photochemical Behaviour under UV Irradiation

A. Falamaş, A. Petran, A. Hada, and A. Bende, International Journal of Molecular Sciences 10 (23), 5483 (2022).

Electron–Hole Binding Governs Carrier Transport in Halide Perovskite Nanocrystal Thin Films

M. F. Lichtenegger, J. Drewniok, A. Bornschlegl, C. Lampe, A. Singldinger, N. A. Henke, and A. S. Urban, ACS Nano (2022).

Intrachain photophysics of a donor–acceptor copolymer

H. Nho, W. Park, B. Lee, S. Kim, C. Yang, and O. Kwon, Physical Chemistry Chemical Physics 4 (24), 1982-1992 (2022).

Large π-Conjugated Metal–Organic Frameworks for Infrared-Light-Driven CO2 Reduction

J. Zeng, X. Wang, B. Xie, Q. Li, and X. Zhang, Journal of the American Chemical Society 3 (144), 1218-1231 (2022).

Novel Synthetic Dopamine Analogues: Carbon-13/Nitrogen-15 Isotopic Labeling and Fluorescence Properties

C. Lar, S. Radu, E. Gál, A. Fălămaş, J. Szücs‑Balázs, C. Filip, and A. Petran, Analytical Letters, 1-13 (2022).

Size-dependent spectroscopic insight into the steady-state and time-resolved optical properties of ZnO photocatalysts

A. Falamas, I. Marica, A. Popa, D. Toloman, S. Pruneanu, F. Pogacean, F. Nekvapil, T. D. Silipas, and M. Stefan, Materials Science in Semiconductor Processing 145, 106644 (2022).

Comparison of growth interruption and temperature variation impact on emission efficiency in blue InGaN/GaN MQWs

J. Mickevičius, K. Nomeika, M. Dmukauskas, A. Kadys, S. Nargelas, and R. Aleksiejūnas, Vacuum 183, 109871 (2021).

Double Charge Transfer Dominates in Carrier Localization in Low Bandgap Sites of Heterogeneous Lead Halide Perovskites

A. Fakharuddin, M. Franckevičius, A. Devižis, A. Gelžinis, J. Chmeliov, P. Heremans, and V. Gulbinas, Advanced Functional Materials 15 (31), 2010076 (2021).

Germanium-lead perovskite light-emitting diodes

D. Yang, G. Zhang, R. Lai, Y. Cheng, Y. Lian, M. Rao, D. Huo, D. Lan, B. Zhao, and D. Di, 1 (12) (2021).

1

2 3 4 5 6 7 下一页