Highly focused ultrashort pulses enable volume modification of transparent materials, such as glass, sapphire, and other crystals. The robust control of laser parameters and precise intra-volume positioning of laser focal spot allows inscription of complex structures like Bragg gratings and waveguides.
The process is typically driven by multiphoton absorption, which requires high intensities so that the material is modified only at the focal spot. The laser-induced material volume modification impacts the density of the material and, subsequently, the refractive index. This is a key principle utilized in the creation of fiber Bragg gratings (FBGs) as alternating structures are written into the transparent material by inducing refractive index change rather than optically damaging the fiber. FBGs have been demonstrated in both single-mode and dual-cladding fibers.
Furthermore, the modified material can be chemically etched away. This two-step process is called selective laser etching. After volume modification, the glass or sapphire gains different etching properties. Thus, using material-dependent etching solutions, various mechanically stable and durable structures, like curved waveguides or even 3D forms, are obtained.
PHAROS and CARBIDE femtosecond lasers are widely used for all of the aforementioned volume modification applications, making a strong impact in the development of future technologies.
- 100 fs – 20 ps 连续可调脉宽
- 最大单脉冲能量 4 mJ
- 最高输出功率 20 W
- 单脉冲 – 1 MHz 重复频率
- BiBurst 脉冲串功能
- 自动谐波发生器(高达 5 次谐波)
- 190 fs – 20 ps 连续可调脉宽
- 最大单脉冲能量 2 mJ
- 最大输出功率 80 W
- 单脉冲 – 2 MHz 重复频率
- 脉冲选择器功能,可按需输出脉冲
- BiBurst 脉冲串模式
- 风冷型号
- 515 nm, 343 nm, 257 nm 和 206 nm
- 软件选择输出波长
- 直接安装在激光器头上并集成一体式
- 坚固耐用的工业级机械设计
- 515 nm, 343 nm 和 257 nm
- 软件选择输出波长
- 直接安装在激光器头上并集成一体式
- 坚固耐用的工业级机械设计
- 30 W 紫外型号
Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses
Z. Li, X. Li, F. Yu, Q. Chen, Z. Tian, and H. Sun, Optics Letters 3 (46), 520 (2021).
Flexible four-dimensional optical data storage enabled by single-pulse femtosecond laser irradiation in thermoplastic polyurethane
W. Chen, Z. Yan, J. Tian, S. Liu, J. Gao, and J. Zhang, (2021).
Highly Emissive Deep-Red Perovskite Quantum Dots in Glass: Photoinduced Thermal Engineering and Applications
K. Sun, D. Tan, J. Song, W. Xiang, B. Xu, and J. Qiu, Advanced Optical Materials, 2100094 (2021).
Photoluminescence of Point Defects in Silicon Dioxide by Femtosecond Laser Exposure
V. D. Michele, E. Marin, A. Boukenter, M. Cannas, S. Girard, and Y. Ouerdane, physica status solidi (a), 2000802 (2021).
Poisson′s ratio measurement through engraving the grid pattern inside poly(dimethylsiloxane) by ultrafast laser
H. S. Cho, H. A. Kim, D. W. Seo, and S. C. Jeoung, (2021).
Self-organized phase-transition lithography for all-inorganic photonic textures
B. Zhang, D. Tan, Z. Wang, X. Liu, B. Xu, M. Gu, L. Tong, and J. Qiu, Light: Science & Applications 1 (10) (2021).
Battery-free fully integrated microfluidic light source for portable lab-on-a-chip applications
F. Storti, S. Bonfadini, and L. Criante, 1 (10) (2020).
Control of Laser Induced Cumulative Stress for Efficient Processing of Fused Silica
Q. Sun, T. Lee, M. Beresna, and G. Brambilla, 1 (10) (2020).
Direct Laser Written Waveguide in Tellurite Glass for Supercontinuum Generation in 2 µm Spectral Range
A. G. Okhrimchuk, A. D. Pryamikov, A. V. Gladyshev, G. K. Alagashev, M. P. Smayev, V. V. Likhov, V. V. Dorofeev, S. E. Motorin, and Y. P. Yatsenko, Journal of Lightwave Technology 6 (38), 1492-1500 (2020).
Femtosecond laser inscription of waveguides and Bragg gratings in transparent cyclic olefin copolymers
G. Roth, S. Hessler, S. Kefer, M. Girschikofsky, C. Esen, and R. Hellmann, Optics Express 12 (28), 18077 (2020).