Applications

体积修正

Highly focused ultrashort pulses enable volume modification of transparent materials, such as glass, sapphire, and other crystals. The robust control of laser parameters and precise intra-volume positioning of laser focal spot allows inscription of complex structures like Bragg gratings and waveguides.

The process is typically driven by multiphoton absorption, which requires high intensities so that the material is modified only at the focal spot. The laser-induced material volume modification impacts the density of the material and, subsequently, the refractive index. This is a key principle utilized in the creation of fiber Bragg gratings (FBGs) as alternating structures are written into the transparent material by inducing refractive index change rather than optically damaging the fiber. FBGs have been demonstrated in both single-mode and dual-cladding fibers.

Furthermore, the modified material can be chemically etched away. This two-step process is called selective laser etching. After volume modification, the glass or sapphire gains different etching properties. Thus, using material-dependent etching solutions, various mechanically stable and durable structures, like curved waveguides or even 3D forms, are obtained.

PHAROS and CARBIDE femtosecond lasers are widely used for all of the aforementioned volume modification applications, making a strong impact in the development of future technologies.

  • 100 fs – 20 ps 连续可调脉宽
  • 最大单脉冲能量 4 mJ
  • 最小脉宽输出 < 100 fs
  • POD 和 BiBurst 功能
  • 高达 5 次谐波或可调谐扩展
  • CEP 稳定或重复频率锁定
  • 热稳定性和密封设计
  • 190 fs – 20 ps 连续可调脉宽
  • 最大输出 1 mJ @ 120 W 或 2 mJ @ 80 W
  • 单脉冲 – 2 MHz 重复频率
  • POD 和 BiBurst 功能
  • 高达 5 次谐波或可调谐扩展
  • 风冷型号
  • 紧凑的工业级设计
  • 515 nm, 343 nm, 257 nm 和 206 nm
  • 软件选择输出波长
  • 坚固耐用的工业级机械设计
  • 515 nm, 343 nm 和 257 nm
  • 软件选择输出波长
  • 直接安装在激光器头上并集成一体式
  • 坚固耐用的工业级机械设计
  • 50 W 紫外型号

Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses

Z. Li, X. Li, F. Yu, Q. Chen, Z. Tian, and H. Sun, Optics Letters 3 (46), 520 (2021).

Highly Emissive Deep-Red Perovskite Quantum Dots in Glass: Photoinduced Thermal Engineering and Applications

K. Sun, D. Tan, J. Song, W. Xiang, B. Xu, and J. Qiu, Advanced Optical Materials, 2100094 (2021).

Photoluminescence of Point Defects in Silicon Dioxide by Femtosecond Laser Exposure

V. D. Michele, E. Marin, A. Boukenter, M. Cannas, S. Girard, and Y. Ouerdane, physica status solidi (a), 2000802 (2021).

Self-organized phase-transition lithography for all-inorganic photonic textures

B. Zhang, D. Tan, Z. Wang, X. Liu, B. Xu, M. Gu, L. Tong, and J. Qiu, Light: Science & Applications 1 (10) (2021).

Control of Laser Induced Cumulative Stress for Efficient Processing of Fused Silica

Q. Sun, T. Lee, M. Beresna, and G. Brambilla, 1 (10) (2020).

Direct Laser Written Waveguide in Tellurite Glass for Supercontinuum Generation in 2 µm Spectral Range

A. G. Okhrimchuk, A. D. Pryamikov, A. V. Gladyshev, G. K. Alagashev, M. P. Smayev, V. V. Likhov, V. V. Dorofeev, S. E. Motorin, and Y. P. Yatsenko, Journal of Lightwave Technology 6 (38), 1492-1500 (2020).

Femtosecond laser inscription of waveguides and Bragg gratings in transparent cyclic olefin copolymers

G. Roth, S. Hessler, S. Kefer, M. Girschikofsky, C. Esen, and R. Hellmann, Optics Express 12 (28), 18077 (2020).