Sophisticated scientific laser systems, such as optical parametric chirped-pulse amplification (OPCPA) systems, usually consist of multiple parts, the most essential often being its front-end used for laser pumping and seeding.
Backed by proven industrial-grade design that is the core of the PHAROS and CARBIDE laser families, FLINT femtosecond oscillators exhibit state-of-the-art performance with an output power of 20 W and sub-40 fs pulse duration. These oscillators support carrier-envelope phase (CEP) stabilization and repetition-rate locking to an external reference. The FLINT oscillator is an excellent laser source for seeding Yb/Nd-based ultrashort pulse laser amplifiers as well as pumping of femtosecond optical parametric oscillators (OPOs), as demonstrated in the recent publications by J. Vengelis and I. Stasevičius. In addition, if CEP-stable output is desired, the FLINT oscillators (or oscillator output from PHAROS lasers) is used to seed other laser sources; see application on CEP stabilization for more information.
Furthermore, due to inherently high-contrast output pulses, ORPHEUS-OPCPA has been adopted as front-end in ultra-high intensity lasers. Benefiting from the industrial-grade stability and reliability of PHAROS and CARBIDE lasers, it delivers few-cycle, CEP-stable pulses in a package as compact as our standard parametric amplifiers and serves as a seed source for larger amplifiers, delivering background-free pulses with near-single-cycle bandwidths, excellent spectral phase coherence, and CEP stability. Most recently, the LIGHT CONVERSION front-end provided seed pulses for a pump and optically synchronized signal pulses for three consecutive OPCPA stages in the 4.4 TW OPCPA system; see the publication by M. Kretschmar et al. for more details.
- 11 Mhz、40 Mhz 或 76 Mhz 的重复频率
- <50 fs 的脉宽
- 最高可达 20 W 的高功率型号
- 最高可达 0.6 µJ 的高能量型号
- 高输出稳定性的工业级设计
- CEP 稳定或重复频率锁定
- 100 fs – 20 ps 连续可调脉宽
- 最大单脉冲能量 4 mJ
- 最小脉宽输出 < 100 fs
- POD 和 BiBurst 功能
- 高达 5 次谐波或可调谐扩展
- CEP 稳定或重复频率锁定
- 热稳定性和密封设计
- 少周期脉冲,结构紧凑,占地面积小
- 800 nm、1600 nm、2000 nm 或 3000 nm 输出
- 高达MHz的重复频率
- 高对比度种子源,适用于 CPA 和 OPCPA 系统
- 卓越的功率、脉冲能量和 CEP 稳定性
- SH/TH 可选
Long seed, short pump: converting Yb-doped laser radiation to multi-µJ few-cycle pulses tunable through 2.5–15 µm
R. Budriūnas, K. Jurkus, M. Vengris, and A. Varanavičius, Optics Express 8 (30), 13009 (2022).
Utilizing the temporal superresolution approach in an optical parametric synthesizer to generate multi-TW sub-4-fs light pulses
A. A. Muschet, A. D. Andres, P. Fischer, R. Salh, and L. Veisz, Optics Express 3 (30), 4374 (2022).
All-optical polarization and amplitude modulation of second-harmonic generation in atomically thin semiconductors
S. Klimmer, O. Ghaebi, Z. Gan, A. George, A. Turchanin, G. Cerullo, and G. Soavi, (2021).
Compact millijoule Yb3+:CaF2 laser with 162 fs pulses
M. Loeser, C. Bernert, D. Albach, K. Zeil, U. Schramm, and M. Siebold, Optics Express 6 (29), 9199 (2021).
Broadband Mid-Infrared Source Tunable through 3-11pm Based on Yb-doped Laser and Dual OPA Setup
R. Budriunas, K. Jurkus, and A. Varanavicius, in Conference on Lasers and Electro-Optics, (OSA, 2020).
Cascaded nonlinearities in high-power femtosecond optical parametric oscillator
I. Stasevičius, G. Martynaitis, and M. Vengris, Journal of the Optical Society of America B 3 (37), 721 (2020).
Cascaded nonlinearity induced spatial domain effects in a high power femtosecond optical parametric oscillator
I. Stasevičius, and M. Vengris, Optics Express 22 (28), 33490 (2020).
Controlled soliton formation in a femtosecond optical parametric oscillator with positive group delay dispersion
I. Stasevičius, and M. Vengris, Journal of the Optical Society of America B 10 (37), 2956 (2020).
Exploiting optical nonlinearities for group delay dispersion compensation in femtosecond optical parametric oscillator
I. Stasevicius, and M. Vengris, Optics Express (2020).
SYLOS lasers – the frontier of few-cycle, multi-TW, kHz lasers for ultrafast applications at extreme light infrastructure attosecond light pulse source
S. Toth, T. Stanislauskas, I. Balciunas, R. Budriunas, J. Adamonis, R. Danilevicius, K. Viskontas, D. Lengvinas, G. Veitas, D. Gadonas et al., Journal of Physics: Photonics 4 (2), 045003 (2020).